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 

Abstract—Researchers at Boston University (BU)’s 

Neuromorphics Lab, part of the NSF-sponsored Center of 

Excellence for Learning in Education, Science and Technology 

(CELEST), are working in collaboration with engineers and 

scientists at Hewlett-Packard (HP) to implement neural models of 

intelligent processes on the next generation of dense, low-power, 

computer hardware that will use memristive technology to bring 

data closer to the processor where computation occurs. The HP 

and BU teams are jointly designing optimal infrastructure, 

simulations, and software platform to build an artificial brain. 

The resulting Cog Ex Machina (Cog) software platform has been 

successfully used to implement a large-scale, multi-component 

brain system able to simulate in a virtual environment some key 

rat behavioral results, and has been applied to control robotic 

platforms as they learn to interact with their environment. 

 
Index Terms— neuromorphic computing, memristors, large 

scale simulations, animat.  

I. INTRODUCTION 

hroughout the last century, people have speculated about 

whether or not machines would be able to think, learn, or 

behave in a human-like way. Attempts to build thinking 

machines have had limited success to date. Many machines 

appear to behave like humans on specific tasks, but completely 

fail when faced with unexpected situations because they are 

unable to learn when they encounter new environments, 

stimuli, or tasks. This situation is confounded by the problem 

that no one really knows how to build an artificial brain, 

because we are not fully sure how our own brains work.  

 In the past few years, however, there have been advances in 

many fields of research that might lead to the building of an 

intelligent electronic brain. Neuroscience researchers have 

observed learning at the level of a single synapse and have 

gained considerable insight into how learning occurs at this 

scale. Psychologists have looked deeply into learning and 
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behaviors in humans in a wide variety of tasks and have also 

used other mammals such as rats to help with understanding 

intelligent behaviors. Computational neuroscientists have 

developed increasingly sophisticated neural models to describe 

both the underlying neural mechanisms and their resulting 

behaviors. Engineers have been hard at work developing new 

computer hardware that will allow for many more 

computations to be performed in a shorter amount of time – all 

while consuming less power.  

 One key hardware development is the advance in 

understanding memristive devices. Memristive devices are 

two-terminal, nonlinear, passive electrical components that 

change their resistance as a function of the voltage history. The 

technology offers potential benefits of much higher memory 

density, lower power consumption, and compatibility with 

existing chip manufacturing processes. Eventually, memristive 

devices may find a use as direct analogs to biological synapses 

in neuromorphic hardware, but even as a memory technology 

in a more conventional digital processor, memristive 

technology will dramatically increase performance and power 

efficiency. 

These devices have allowed for renewed hope in the 

artificial brain race, because they show promise in changing 

the architecture of computer circuitry. Memristive materials 

are compatible with complementary metal–oxide–

semiconductor (CMOS) processes, the standard technology for 

integrated circuits, thus allowing for designers to couple dense, 

memristive memories with conventional and widely available 

chips.  This is truly an enabling technology for building 

artificial brains, because the close proximity of memory and 

computation is a key reason why biological computation is so 

efficient.  

II. THE MODULAR NEURAL EXPLORING TRAVELING AGENT - 

MONETA 

 In the past two years, the BU team has developed a novel 

modular approach in building the neural models that power an 

artificial brain. The macro-structure of the brain is initially 

specified with the goal of being able to “swap in” more refined 

neural circuits when they become available. Modules are 

currently being developed with increasing complexity and 

plugged into the architecture, such that the artificial brain 

system will increase in its functional capabilities as 

development progresses. This whole brain system is called 

MoNETA (Modular Neural Exploring Traveling Agent, Figure 

1, bottom; [2]) and it runs on a special operating system called 

Cog Ex Machina or Cog for short [3], which is designed to 
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provide a flexible, digital platform for the brain models and 

neuromorphic hardware to interact in a real or virtual 

environment. MoNETA uses Cog to control an animat, a term 

defining artificial animals, which can be either virtual 

simulations or physical robots. Cog offers a way for 

researchers to continue building models quickly at relatively 

low cost while the development of the underlying technology 

advances. 

The MoNETA visual system as currently used involves 

parallel what and where processing streams to simultaneously 

identify and localize objects, respectively. An example of how 

MoNETA does this is the use of a “dynamic attentional 

window" in the where system that helps the what system to 

focus on a restricted candidate area upon which to deploy 

limited attentional resources. Simultaneously, the what system, 

once an object is beginning to be identified, biases the where 

system to explore areas nearby the locus of attention that led to 

the object classification.  

MoNETA has the ability to learn and have higher-level 

cognitive skills. To achieve this goal, MoNETA has a 

simulated motivational system, modeled after animal drives, to 

evaluate the utility of objects in its surroundings. MoNETA 

implements reinforcement learning models for motivation and 

reward, which in turn bias how the animat selects goals in the 

environment. Examples of biological drives are lack of 

comfort and curiosity towards unexplored spatial locations. At 

any given time, the simulated equivalents of these biological 

drives compete to control the motor system and move the 

animat towards a desired location. In addition, MoNETA 

learns the physical locations of rewards and punishments via 

reinforcement learning using feedback from the environment. 

MoNETA then uses the current location and learned goal 

location to approach the goal via bidirectional graph search 

that determines the optimal path to the desired location, even 

in cluttered environments. 

MoNETA also integrates sensory information (currently, 

 
Fig. 1.  Top left: MoNETA learns to perform the Morris Water Maze task, a typical behavioral paradigm where a rat learns the position of a submerged platform, 

and is able to swim to it with progressively more direct trajectories when dropped in the water tank. In the first trial, MoNETA explores its environment driven 

by simulated motivational states, or drives, representing the biological equivalents of lack of comfort and curiosity. Once it by chance swims on top of the 

submerged platform (green), MoNETA learns its position by using some visual landmark at the border of the pool. As training progresses, MoNETA is able to 

swim directly from its current position to the platform. Top Right: MoNETA can be run on robotic platforms both land and air, by wirelessly interfacing the robot 

to a workstation of a cluster where Cog runs the MoNETA brain. Bottom: The MoNETA (Modular Neural Exploring Traveling Agent) system diagram. 

MoNETA is a whole-brain-system model consisting of sensory, motivation, and navigation areas interfaced with a virtual environment or robotic platform. The 

first version of MoNETA consisted of approximately 32M neurons and 13B synapses  
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vision, touch, and proprioception) into higher order 

representations of its emerging reality, and is able to react to 

novel situations not explicitly programmed within the 

software.  

 MoNETA v1.0 is completed and has been tested in an 

animat negotiating a virtual Morris Water Maze task (Figure 1, 

top left). The Morris Water Maze [1] is a task used to probe 

the navigation skills of a rodent. In this classic task, the rat is 

placed in a water tank and has to use visual cues in order to 

locate a submerged platform and swim to it. The rat is 

motivated to find the platform because it does not like being 

wet. Researchers have studied this task at great length, so we 

know a great deal of the brain areas a rat utilizes in completing 

the task. Although an apparently simple task, solving the water 

maze requires the integrated simulation of brain areas 

subserving object recognition and localization, touch, 

proprioception, goal selection, motivation, and navigation, 

among others.   

The development of new hardware technologies is still in 

early phases of research and testing, so MoNETA is powered 

by simulated architectures that take advantage of a 

heterogeneous arrangement of computer processors. Cog 

provides the glue between the hardware and the neural models, 

which in turn allows for seamless integration of new hardware 

as it is developed.  

Success of the animat on the Morris Water Maze task marks 

the end of the first phase of the project. Initial testing of 

MoNETA was also done on robotic platforms in a real 

environment (Figure 1, top right). The next phase will involve 

running the animat in several other experimental rodent-maze 

paradigms and expanding the complexity of the neural models 

powering the animat. In parallel, advances in software and 

hardware architectures brought forward by our colleagues at 

HP will bring us closer to being able to implement these 

models in robotic and mobile platforms.  

III. CONCLUSIONS 

Although MoNETA is far from a truly thinking learning 

machine scalable to human intelligence, it does represent an 

important first milestone in the development of such an 

artificial brain. It models biological brain functions, it is able 

to replicate rodent behavior in a simple paradigm, and it takes 

into account new and vibrant advances in hardware that come 

closer to mimicking biology than ever before. 
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